Measurement Invariance (MI): a general overview

Eric Duku
Offord Centre for Child Studies

21 January 2015
Plan

- Background
- What is Measurement Invariance
- Methodology to test MI
- Challenges with post-hoc MI analysis
- Summary
- Questions to ponder
“Mathematics is the foundation of many disciplines”...
Will the real Eric stand up?
How did I get to be interested in MI

- Almost 10 years ago
- International EDI work
 - Adaptation, translation, implementation
- Other studies at OCCS
 - adoption/adaptation of instruments
- OCCS study group
- UOttawa
- The rest is history...or is it?
WHAT IS MEASUREMENT INVARIANCE (MI)?
Measurement Invariance (MI)

- Fundamental component of measurement
 - Similarity of understanding of concepts, instructions

- Measurement Invariance
 - Measurement equivalence, measurement invariance, factorial invariance
 - Cross-cultural validity / Cross-cultural equivalence
Measurement Invariance (MI)

Central principle of MI:

Relationships between items and traits (or latent constructs) are stable across groups & have the same psychometric properties across groups.
Clinical scales: Inhibit, EC (Emotional Control), Shift, WM (Working Memory) and PO (Plan/Organize)
Indices: ISCI (Inhibitory Self-Control Index), FI (Flexibility Index) and EMI (Emergent Metacognition Index)
GEC = Global Executive Composite
What we know...

- History of MI is extensive beginning with admission tests and moving to other areas of research

- MI rarely or explicitly examined in ECD research

Vandenberg 2002; Lance & Vandenberg, 2000; Byrne & Watkins, 2003; Knight & Zerr, 2010;
WHY DO WE NEED TO CHECK FOR MI?
Why we need to check for MI

- In ECD most research is comparative, longitudinal, or cross-sectional
 - e.g., Children regularly compared on constructs by group using differences in means and multivariate methods

- Accuracy of inferences has been shown to depend on measurement invariance of constructs over time and across groups
 - need to examine the underlying measurement structure of the constructs we are interested in within our sample, and subgroups within our sample
Why we need to check for MI

Measurement non-invariance usually arises when responses are based on perceptions rather than observable and measurable quantities

Meredith & Teresi, 2006

- Critical in ECD research where responses are based on parent or teacher perceptions
Possible contributors to Measurement non-invariance

- **Culture**
 - shared language, ideas, beliefs, values, and behavioural norms (ethnicity or nationality)

- **Age (development) - longitudinal**
 - e.g. pre-grade 1 versus post grade 1

- **Sample used**
 - clinical versus community

- **Informant/respondent (context)**
 - Parent versus teacher
Contributors to Measurement

Non-invariance

Other contributors

- instrument adaptation (e.g., translation),
- familiarity with item response formats, and
- many other socio-cultural factors e.g. taboos, gender, social desirability
- items having different meanings across groups; or
- instrument being administered under different conditions for different groups
METHODOLOGY TO TEST MI
Methodology used...

- Psychometric validity
 - typical & incomplete
 - internal consistency, construct & discriminant validity

- Rasch measurement model
 - Software - RUMM2030

- Multi-group Confirmatory Factor Analysis (MGCFA)
 - Software: Mplus, AMOS, STATA, LAVAAN, Mx, etc.
Methodology – Rasch analysis

- Based on the Rasch model, *G. Rasch, 1960*

 probability of a given respondent affirming an item is a logistic function of the relative distance between the item location and the respondent location on a linear scale

 e.g. person’s level of anxiety and level of anxiety expressed by item

- Data should fit the model

- Iterative analyses

 Overall fit to Rasch model; local dependency; extreme item and person residuals; disordered thresholds; unidimensionality; differential item functioning; invariance
Methodology – multi-group CFA

- Confirmatory Factor Analysis
 - most widely used method to test for MI
 - based on the original work by Karl Joreskog (1971)
 - permits testing for MI by setting cross-group constraints and comparing more restricted models with less restricted models
Process – multi-group CFA?

- Is there a single measurement model established? Are there competing measurement models?
- Test fit of measurement model(s) in sample; and in each subgroup of interest
- Test for invariance; use constraints to test for differences between models
- Significant change in fit statistics => reject hypothesis of invariance
Methodology – multi-group CFA

Hierarchical iterative process:

- Configural invariance (or construct equivalence)
 - common factor model across groups

- Metric invariance (or measurement unit equivalence)
 - same meaning across groups
 - can compare factor variances/covariances

- Scalar invariance (or full scale equivalence)
 - can compare group means

- Uniqueness – unique variance of observed items
- Partial invariance
Implications of non-invariance

- Back to the drawing board
- Examine instrument adoption/adaptation process
- Figure out a new measurement model using EFA
A typical instrument creation or adaptation process

<table>
<thead>
<tr>
<th>Original instrument translated</th>
<th>Literature review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translator I: Fluent in target language, good understanding of original language</td>
<td></td>
</tr>
<tr>
<td>Translator II: Fluent in target language, good understanding of original language</td>
<td></td>
</tr>
<tr>
<td>A synthesized translated version</td>
<td>Translator III: Fluent in target language, good understanding of original language</td>
</tr>
<tr>
<td>Back-translations</td>
<td>Back-translator I: Fluent in original language, good understanding of target language</td>
</tr>
<tr>
<td>Back-translator II: Fluent in original language, good understanding of target language</td>
<td></td>
</tr>
<tr>
<td>A synthesized back-translated version</td>
<td>Back-translator III: Fluent in original language, good understanding of target language</td>
</tr>
<tr>
<td>Expert committee</td>
<td>Literature review</td>
</tr>
<tr>
<td>Instrument pretested</td>
<td>Discussions with experts in the field and members of target population</td>
</tr>
<tr>
<td>Revised instrument</td>
<td></td>
</tr>
<tr>
<td>Investigation of operational equivalence</td>
<td></td>
</tr>
<tr>
<td>Main study</td>
<td></td>
</tr>
<tr>
<td>Exploratory and confirmatory analysis</td>
<td></td>
</tr>
<tr>
<td>Final instrument</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE
Measurement equivalence of the autism symptom phenotype in children and youth

Eric Duku, ¹ Peter Szatmari, ¹ Tracy Vaillancourt, ² Stelios Georgiades, ¹ Ann Thompson, ¹ Xiao-Qing Liu, ³ Andrew D. Paterson, ⁴,⁵ and Terry Bennett ¹

¹Offord Centre for Child Studies & Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; ²Faculty of Education and School of Psychology, University of Ottawa, Ottawa, ON, Canada; ³Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB, Canada; ⁴Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; ⁵Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Background

Autism Diagnostic Interview - Revised (ADI-R)

Rutter, Le Couteur & Lord, 2003

- Semi-structured parent interview; 93 items, 34 used for diagnosis of ASD
 - 0 = not present, 1 = present in abnormal form, 2 = definite abnormal, 3 = extreme severity
- Measures impairment in 3 domains
 - Social interaction, Communication & Repetitive restricted behaviour
- 3628 individuals
 - Data on 28 algorithm items, child age, child sex and verbal status from Autism Genome Project (AGP) database
- Examine competing measurement models of the autism symptom phenotype using CCFA
Measurement model of autism symptom phenotype

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2(d.f.) = statistic</th>
<th>CFI</th>
<th>TLI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six-factor (Liu et al., 2011)</td>
<td>χ^2(220)=2286.084</td>
<td>0.937</td>
<td>0.977</td>
<td>0.051</td>
</tr>
<tr>
<td>2^{nd}-order DSM-5</td>
<td>χ^2(224)=2463.441</td>
<td>0.932</td>
<td>0.975</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Results

- 2nd order 2-factor DSM 5 measurement model provided a good fit
- Autism symptom phenotype best characterized by six-factor 1st order measurement model
 - more parsimonious
 - MI across subgroups of ASD children – age, sex and verbal status
To be done...

- Examine MI across other subgroups of children e.g., IQ
- Examine the 2nd order 2-factor DSM-5 measurement model in other larger samples
- Replicate findings using other measures of the autism symptom phenotype e.g., Autism Diagnostic Observation Schedule (ADOS)
CHALLENGES WITH POST-HOC MI ANALYSES
Challenges with post-hoc MI analyses

- Availability of useable and accessible data
- Scope of data collected within each of the studies
- MI across subgroups beyond those in the data collected
- Cooperation of developers to have their already established instruments under scrutiny
SUMMARY
To recap...

- Credibility of inferences regarding the developmental process or developmental differences is affected by the absence of established measurement invariance.

- MI needs to be examined when making comparisons across groups in ECD research since most scores cannot be directly measured.

- Recommended approach to testing and establishing MI is iterative and very comprehensive.
Almost there...

- Importance to assess & verify MI prior to performing group comparisons and interpreting group comparisons in comparative ECD research

- Testing for MI provides useful information for the refinement of existing, widely used instruments

- Commentary (Hus et al.; JCPP, 2013)
 - Provides validation of the importance of this work by independent researchers on instruments with cooperation of developers
Almost final words...

- MI should not only be an a priori consideration, but also an aspect of critical appraisal of studies using and adapting instruments

- Assumption of universal applicability of instruments should be challenged and tested
Some questions to ponder...

- How do we bridge the gap between practitioners and academics?
- How do we make this methodology accessible to practitioners?
- How do we inform & educate ECD researchers to be aware of the implications of not examining MI a priori and as part of research plans?
Thank you…

- Members (too many to list 😊) of the Offord Centre for their support
“All models are wrong, but some are useful”

Box & Draper
I'm filling out a reader survey for chewing magazine.

See, they asked how much money I spend on gum each week, so I wrote, "$5.00." For my age, I put "43," and when they asked what my favorite flavor is, I wrote "garlic/curry."

This magazine should have some amusing ads soon. I love messing with data.
RANDOM THOUGHTS???
Future random thoughts???

- Missing data
- Data Integration and Integrative data analysis
- Changing scales of measure

Vandenberg, R. J. (2002). Toward a further understanding of and improvement in measurement invariance methods and procedures. *Organizational Research Methods, 5*(2), 139-158.